MULTI-STAGE VACUUM GENERATORS SERIES M

These vacuum generators feature multiple state of the art ejectors assembled onto small modules. One of their distinctive features is their great suction capacity compared to their reduced size.

۲

With a compressed air supply of 4 ÷ 5 bar (g), they can produce a maximum vacuum equal to 85% and a suction capacity of 3.6 ÷ 18 cum/h, according to the number of modules. The silencer is built-in.

They are fully made with slightly anodised alloys and can be installed in any position. The multi-stage vacuum generators in this range are suited for interconnecting vacuum cup gripping systems and, in particular, in the industrial robotics sector, which requires equipment with excellent working performance, but with weight and size reduced to the minimum.

P=COMPRESSED AIR CONNECTION

R=EXHAUST

۲

8

Art. M 3 Quantity of sucked air cum/h 3 3.4 3.6 5.4 5.8 6.2 Max. vacuum level 62 62 -KPa 82 85 82 85 **Final pressure** mbar abs. 380 180 150 380 180 150 Supply pressure bar (g) 3 4 5 3 4 5 Air consumption NI/s 0.5 0.7 0.8 0.8 1.2 1.4 -10 / +80 Working temperature °C -10/+80 **Noise level** dB(A) 64 70 Weight 109 111 g 24.5 25.5 A 10 9 B C 4.5 4.5 Ø Е 20 24 12 F 11 Ø G1/4" G3/8" G **Spare parts** 00 KIT M 7 Sealing kit and reed valve art. 00 KIT M 3

A

U=VACUUM CONNECTION

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6} = \frac{Kg}{0.4536}$ GAS-NPT thread adapters available at page 1.117

8.29

3D

drawings available at www.vuototecnica.net

MULTI-STAGE VACUUM GENERATORS M 3 and M 7

Air capacity (NI/s) at different vacuum levels (-Kpa)

۲

Generator	Supply press.	Air consumption	Air capacity (NI/s) at different vacuum levels (-KPa)							Max. vacuum level		
art.	bar (g)	NI/s	0	10	20	30	40	50	60	70	80	-KPa
M 3	5.0	0.8	1.00	0.83	0.61	0.34	0.18	0.12	0.10	0.07	0.03	85
M 7	5.0	1.4	1.72	1.28	0.89	0.50	0.37	0.27	0.16	0.11	0.05	85

w.vuototecnica.net	Ĕ	6000 4000 2000				_		/	/					ی 300 200					/	/	/				
available at ww			10 2	20	30	40	50 -KPa	60	70	80	85				10	20	30	40	50 -KPa	60	70	80	85		
gs	Gen <mark>erator</mark>	S	upply p	oress		Air o	onsur	nptior	n			Evad	cuation tin	ne (ms/l = s/	/m³) at di	ifferent	t vacı	um le	vels (-	KPa)			Max. v	acuum le	vel
win	a <mark>rt.</mark>		bar (g))			NI/s				10	20	30	40	50	6	60	70	D	80		85		-KPa	
dra	M 3		5.0				0.8	}			106	244	491	969	1642	23	398	400)4	7128	3 1	0122		85	
3D	M 5		5.0				1.4	Ļ			61	142	285	563	954	13	394	232	28	4144	4	5885		85	

۲

۲

MULTI-STAGE VACUUM GENERATORS M 10, M 14 and M 18

۲

P=COMPRESSED AIR CO	NNECTION	R=EXHA	UST	U=VACUUM CO	NNECTION					
Art.				M 10			M 14			M 18
uantity of sucked air	cum/h	7.7	8.5	9.4	10.2	11.6	12.6	14.8	16.5	18.0
ax. vacuum level	-KPa	62	82	85	62	82	85	62	82	85
nal pressure	mbar abs.	380	180	150	380	180	150	380	180	150
upply pressure	bar (g)	3	4	5	3	4	5	3	4	5
ir consumption	NI/s	1.2	1.6	1.9	1.7	2.1	2.5	2.3	2.9	3.6
orking temperature	°C			-10 / +80			-10 / +80			-10 / +80
oise level	dB(A)			72			72			76
eight	g			144			145			150
				34.5			34.5			44.5
				20			20			30
				4.5			4.5			4.5
pare parts										
ealing kit and reed valve	art.			00 KIT M 10			00 KIT M 14			00 <mark>KIT M 18</mark>

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

GAS-NPT thread adapters available at page 1.117

8.31

Cap8_8_01_8_59.indd 31

۲

۲

8

MULTI-STAGE VACUUM GENERATORS M 10, M 14 and M 18

۲

Generator	Supply press.	Air consumption			Air capaci	ty (NI/s) at	different	vacuum le	vels (-KPa)			Max. vacuum level
art.	bar (g)	NI/s	0	10	20	30	40	50	60	70	80	-KPa
M 10	5.0	1.9	2.61	2.00	1.55	0.80	0.64	0.50	0.29	0.19	0.09	85
M 14	5.0	2.5	3.50	2.33	1.72	1.00	0.89	0.67	0.35	0.24	0.11	85
M 18	5.0	3.6	5.00	3.50	2.78	2.02	1.02	0.75	0.44	0.30	0.14	85

Evacuation time (ms/l=s/m³) at different vacuum levels (-Kpa)

8.32

۲

۲

MULTI-STAGE VACUUM GENERATORS SERIES M.. SSX

۲

These vacuum generators share the same technical features as the others of the M series described above. Their distinctive feature is their silent operation.

In fact, along with thye built-in silencer, they also have an external SSX silencer for a further noise reduction.

These generators are particularly recommended in work environments where the noise level must be kept within very low values.

D	$\overline{\ }$		
r —		\geq	R
	1	5	

۲

8

P=COMPRESSED AIR CONN	IECTION	R=EXHAUS	U=VAC	UUM CONNECTION				U
Art.					M 3 SSX			M 7 SSX
Quantity of sucked air	cum	/h	3.0	3.4	3.6	5.4	5.8	6.2
Max. vacuum level	-KPa	a	62	82	85	62	82	85
Final pressure	mba	r abs.	380	180	150	380	180	150
Supply pressure	bar	(g)	3	4	5	3	4	5
Air consumption	NI/s		0.5	0.7	0.8	0.8	1.2	1.4
Working temperature	°C				-10/+80			-10 / +80
Noise level	dB(A	N)			52			58
Neight	g				109			111
A Contraction of the second seco					24.5			25.5
3					9			10
;					4.5			4.5
	Ø				20			29
:					11			12
à	Ø				G1/4"			G3/8"
1					74.5			97.5
Spare parts								
Silencer	art.				SSX 1/4"			S <mark>SX 3/8"</mark>
Sealing kit and reed valve	art.				00 KIT M 3			00 KIT M 7

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6} = \frac{Kg}{0.4536}$ GAS-NPT thread adapters available at page 1.117 8.33

۲

A

MULTI-STAGE VACUUM GENERATORS M 3 SSX and M 7 SSX

Air capacity (NI/s) at different vacuum levels (-Kpa)

۲

www.vuototecnica.net 3D drawings available at

۲

Cap8_8_01_8_59.indd 34

8-07-2009 14:13:23

۲

MULTI-STAGE VACUUM GENERATORS M 10 SSX, M 14 SSX and M 18 SSX

۲

P=COMPRESSED AIR CO	NNECTION	R=EXHA	UST	U=VACUUM CO	NNECTION					
Art.				M 10 SSX			M 14 SSX			M 18 SSX
luantity of sucked air	cum/h	7.7	8.5	9.4	10.2	11.5	12.6	14.8	16.5	18.0
lax. vacuum level	-KPa	62	82	85	62	82	85	62	82	85
inal pressure	mbar abs.	380	180	150	380	180	150	380	180	150
upply pressure	bar (g)	3	4	5	3	4	5	3	4	5
ir consumption	NI/s	1.2	1.6	1.9	1.7	2.1	2.5	2.3	2.9	3.6
lorking temperature	°C			-10 / +80			-10 / +80			-10 / +80
oise level	dB(A)			60			62			66
/eight	g			144			145			150
				34.5			34.5			44.5
				20			20			30
				4.5			4.5			4.5
	Ø			29			29			35
	Ø			G3/8"			G3/8"			G1/2"
				106.5			106.5			136.5
pare parts										
ilencer	art.			SSX 3/8"			SSX 3/8"			SSX 1/2"
Sealing kit and reed valve	art.			00 KIT M 10			00 KIT M 14			00 KIT M 18

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

GAS-NPT thread adapters available at page 1.117

۲

8.35

Cap8_8_01_8_59.indd 35

۲

8-07-2009 14:13:30

8

MULTI-STAGE VACUUM GENERATORS M 10 SSX, M 14 SSX and M 18 SSX

۲

۲

www.vuototecnica.net

drawings available at

3D

ms/

۲

Accessories included

Cap8_8_01_8_59.indd 36

FIXING SUPPORTS FOR MULTI-STAGE VACUUM GENERATORS

The supports described in this page are made with anodised aluminium as a standard, but, upon request, they can be supplied in the stainless steel version. These supports are for fixing the multi-stage vacuum generators to the machine via a cylindrical slotted pin or a ball pin housed in the machine itself. They are suited for robotic gripping systems and they allow for an easy installation of the vacuum generators on the profiles used in the automotive sector.

Ø19 26.5 4 ø Μ4 39.5 3.3 φ 48 8

۲

Art.	For	Material	Weight
	generators		g
00 FCH 23	M 3 - M 7 - M 10 - M 14 - M 18	aluminium	63
00 FCH 22	M 3 - M 7 - M 10 - M 14 - M 18	stainless steel	191

Art	For	Material	Weight
	generators		g
00 FCH 13	M 3 - M 7 - M 10 - M 14 - M 18	alu <mark>miniu</mark> m	85
00 FCH 12	M 3 - M 7 - M 10 - M 14 - M 18	stainless steel	256

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

۲